Anatomy and Physiology: Special Senses – The EAR

The Eustachian tube is a canal that links the middle ear with the throat area. This tube helps to equalize the pressure between the outer ear and the middle ear. Having the same pressure allows for the proper transfer of sound waves. The eustachian tube is lined with mucous, just like the inside of the nose and throat.

Inner Ear

The inner ear consists of a maze of fluid-filled tubules running through the temporal bone of the skull. The bony tubes, the bony labyrinth, are filled with a fluid called perilymph.  Within this bony labyrinth is a second series of delicate cellular tubes, called the membranous labyrinth, filled with the fluid called endolymph. This membranous labyrinth contains the actual hearing cells, the hair cells of the organ of Corti.

There are three major sections of the bony labyrinth:

  1. The front portion is the snail-shaped cochlea, which functions in hearing
  2. The rear part, the semicircular canals, helps maintain balance
  3. Interconnecting the cochlea and the semicircular canals is the vestibule, containing the sense organs responsible for balance, the utricle and saccule.

The bony cochlea is so called because it is shaped like a snail shell It has two and a half turns and houses the organ of hearing known as the membranous labyrinth surrounded by fluid called the perilymph. The cochlea has a volume of about 0.2 of a millilitre. In this space lie up to 30,000 hair cells which transduce vibration into nervous impulses and about 19,000 nerve fibers which transmit the signals to and from the brain.

The inner ear has two membrane-covered outlets into the air-filled middle ear – the oval window and the round window. The oval window sits immediately behind the stapes, the third middle ear bone, and begins vibrating when “struck” by the stapes. This sets the fluid of the inner ear sloshing back and forth. The round window serves as a pressure valve, bulging outward as fluid pressure rises in the inner ear. Nerve impulses generated in the inner ear travel along the vestibulocochlear area (cranial nerve VIII), which leads to the brain. This is actually two nerves, somewhat joined together, the cochlear nerve for hearing and the vestibular nerve for equilibrium.

How Do We Hear?

The range of audible sound is approximately 10 octaves from somewhere between 16 and 32 Hz (cycles per second) to somewhere between 16,000 and 20,000 Hz. The sensitivity is low at the extremes but becomes much more sensitive above 128 Hz up to about 4,000 Hz when it again becomes rapidly less sensitive. The range of maximum sensitivity and audibility diminishes with age.

Daisy Jane Antipuesto RN MN

Currently a Nursing Local Board Examination Reviewer. Subjects handled are Pediatric, Obstetric and Psychiatric Nursing. Previous work experiences include: Clinical instructor/lecturer, clinical coordinator (Level II), caregiver instructor/lecturer, NC2 examination reviewer and staff/clinic nurse. Areas of specialization: Emergency room, Orthopedic Ward and Delivery Room. Also an IELTS passer.

What Do You Think?

Pages: 1 2 3 4